ON SCATTERING OF A GAS BEHIND DEFLAGRATION WAVES
PROPELLED BY POWERFUL RADIATION FLUXES

I. V. Nemchinov UDC 534.222.2

Two self-similar problems about plane nonstationary gas scattering in a vacuum behind a
deflagration wave for which the conservation laws are satisfied are considered. The energy
flux density is considered to vary according to a power law. In the first problem the gas is
transparent and scattered adiabatically. The solution is found analytically. It is shown that
the Jouguet condition is conserved for a flux growing with time, while such a condition is not
satisfied for a decreasing flux, and the parameters on the wave depend on the flow behind it.

In the second problem, the gas absorbs radiation, where the absorption coefficient varies from
infinitely large to infinitely small at some transparency temperature. The motion is isothe r-
mal. A definite fraction of the incident energy, corresponding to the effective optical thick-
ness ~0.25, is extracted in the gas.

1. The surface layers of a condensed opaque substance evaporate under the effect of incident power-
ful radiation fluxes. In some cases, the substance being evaporated becomes transparent under the effect
of optical radiation of nottoo high an intensity. The radiation penetrates into deeper layers of the substance,
causing them to heat up, to evaporate, etc.; in substance, comparatively narrow zones of energy liberation
and changes in the phase state or evaporation waves propagate [1-6] in the material,

These are deflagration waves at comparatively low radiation flux densities [7] since they are propa-
gated at subsonic velocities relative to the material ahead of them. The parameters characterizing the state
of the material ahead of and behind the wave are related by the conservation laws [3-6].

Two conditions must still be given to select the "burning™ rate for a known radiation flux density re-
sulting in a wave. One is physical: the temperature of the material behind the wave should be known. The
other is gasdynamie. In the general case, this is the condition that the flow behind the wave be consistent
with the law of wave propagation in a subsonic gas flow: "the overtaking characteristic yields the missing
relationship® [8]. In the limit case the wave moves behind it upon compliance with the Jouguet condition.
For an arbitrary law of time-variation in the radiation-flux density incident on the wave and causing it to
be propagated, the law of wave motion and the flow behind it can only be found by numerical methods ([8],
for example).

The case when the material behind the deflagration wave is completely transparent and is scattered
adiabatically in a vacuum is often examined. The flow behind the wave is self-similar for a constant flux
density anda constant velocity of wave motion (the central rarefaction wave), and the Jouguet condition is
satisfied behind the wave [3-5].

If the incident radiation flux density q is variable, where it varies in time according to the power law
q ~th, and the transparency temperature and effective enthalpy of burning are invariant, then the problem
is self-similar, This problem is considered herein.

Let us examine the case in which the density of the material p, ahead of the deflagration wave is large
compared to the density p, behind the wave., The temperature T, and the velocity of the material ahead of
the wave u, are also small compared to the temperature Ty, and velocity uy, behind the wave. Let us note
that the pressure p, ahead of the wave, which is the parameter desired, is, on the other hand, greater than
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the pressure py, behind the wave. Assuming py=« (or vy= py~1=0), uy =0, T;=0, we obtain the relation-
ships on the wave in the form

Po = Nug + puy N = putiey NH =gy (1.1)

Here N is the mass flow through the wave, g, is the radiation flux density behind the wave, H is the
effective enthalpy including the heat of evaporation:

H = hy + Y, + Q, (1.2)

The enthalpy of the gas behind the evaporation wave hy, is related to py and Py by the equation of
state

hy, = pwpwﬁlvw/ (Yw — 1) (1.3)

where y 1is the integral adiabatic index, and yw is its value behind the wave. Let us write the relationship
hetween the escape veloeity uy, and the sound velocity cys

'Nl = Mpwcw =M kapwpw (1'4)

Here ky, is the differential adiabatic index and the number M is a still undetermined parameter,
Using (1.4), (1.1) and omitting the subscript w for convenience, we obtain

Juf=Mc=MIk(y—1)h/y]"
Po=p (1 + &M, p=qlh(y — 1)/ (k) (HM)™
H=h{+Yky— )M+ 0, (1.5)

Let us henceforth coasider that the differential and integral adiabatic indices are constant and identi-
cal. Then (1.5) simplify and become

lu| =MV ly — Dk, py=p(1+ vMY 1.6)
p= VG =R/ HMy, H=h(l+"Y,@—1) M)+ 0, (-

For a constant value of h and unchanged value of M the ratio between the pressure py, behind the wave
{and in conformity with (1.6) the pressure p, ahead of the wave also] and the flux density q remains invari-
ant. Let us note that the pressure drop py/py, in a deflagration wave is small, does not exist as M —0
{essentially a subsonic heating wave),and equals ~2-2.67 (as y varies between 1 and 5/3 for M=1, the
Jouguet condition is satisfied).

The contribution of the kinetic energy to the effective burning enthalpy is insignificant: the fraction
of kinetic in thermal energy is (1/2)(y —1) M?, i.e., is negligible as y—1 or M — 0. For M=1 and vy =5/3
it is 1/3 the thermal.

If the value of q is constant, then all the rest of the parameters are also constaat for invariant M,
For escape into a vacuum M =1, a central rarefaction wave is propagated behind the deflagration wave [3-
5] (also see the survey papers [10, 11]).

For escape into a sufficiently low density medium or for a sufficiently high radiation flux density
directly behind the deflagrationwave the flow is the same as for escape into a vacuum [11, 12]. At a certain
density of the medium its influence is extended to the deflagration wave and the motion becomes subsonic.
The parameters behind the wave can be found by starting from the counection of the conditions behind the
shock moving in the medium to the conditions on the deflagration wave [13].

The Jouguet condition is spoiled also when the material behind the wave is insufficiently transparent
and a noticeable quantity of energy is liberated therein; shieldiang of the surface beingevaporatedoccurs [8].

It is interesting to clarify the condifions under which the Jouguet condition is satisfied for scattering
in a vacuum and for a completely transparent material behind the wave. .

2. Let there be a power-law time dependence of the flux density on the wave

G =gy (¢/ t)" 2.1)

Let us consider the magnitude of the effective enthalpy hy,, of the temperature Ty, and of the sound
velocity oy, behind the wave to be invariant. Then,according to (1.6), the pressure py, behind the wave and
the density py, also vary according to a power law
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Puw = Ps (] 1e)", Pw = (YPe | ¢°) (2] te)" (2.2)

Assuming M invariant, we find the law of wave motion

tp, Mt :
m, = H(%T*T) (t/t )™ = my ™ 2.3)
The escape velocity is constant
Uy == Cy (2.4)

The quantities p and m, are the pressure and mass at the time t =t, when qy,=q 4 and are deter-
mined by means of (1.6).

The problem is solved in Lagrange mass coordinates. Let us introduce the self-similar variable
po=m/my, = (m/m)(t/ ty) ™D (2.5)

Assuming the gas behind the wave is transparent, let us consider the motion adiabatic and the entropy of
distinet particles different. Starting from the relationships on the evaporation wave and the coandition of
entropy conservation in the particle, we obtain

POY = Pyl (8] 1)V (m / my) ™ A= —ﬁ% (1T — 1)) (2.6)

The solution of the system of equations describing plane nonstationary gas motion will be sought as

P=rps(t12)"P (W), 2=/ 8"V (W), u=cyU{p) 2.7)
We obtain a system of ordinary differential equations to determine P, V, and U:
dU . dP
Mt =0

n v 1 4v (2.8}

-2
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The last of the relationships presented is the so~called adiabaticity integral [14, 15].
The condition on the interface with the vacuum is
P =20 _ (2.9)
and for the parameters behind the wave, we have the conditions
Py=1, V=1 UM)=M (2.10)

The quantity M is a still unknown parameter. Eliminating U from (2.8), we obtain

dP 1

For n =0 there is an analytic solution of (2.11) satisfying (2.7)-(2.10):
k

P = Pk7 V=nps, U=M+ "(m (1 - P'k—I) (2.12)
where the exponents k and s are defined by the relationships
2y T—1 =& L2 Ly—=1 =n
k’:'r+1(1_ 27 n+1)’ ‘5“7+1(1 ) nf1) (2.13)

and the parameter M is defined uniquely by means of n and v
M2=1+Yn(y+1)/y (2.14)

Therefore, for radiation fluxes decreasing with time M < 1, the Jouguet condition is not satisfied,
the motion is subsonic, and the flow behind the deflagration wave affects its parameters.

For n >0 (2.12) is not used successfully since there would be M > 1 according to (2.14). Let us make
a change of variables

P=ypk, V=pry z=y
W == gD M2 — p(e+D) /g2 2.15)

We obtain the following equation from (2.11):

=W 2.16

e = bde (2.16)
— n T noy4ty I Gl N P Sl T

a—(s—lz+1>T_(i+T T ) b= k=2 Tt @17

The boundary conditions (2.10) on the deflagration wave go over into W(0) =W,=M"2. The qualitative
behavior of the integral curves of (2.16) is shown in Fig. 1. The parameter W, has still not been deter-
mined; however,W, =1 since M= 1. It is seen from Fig. 1 that all the integral curves for W, > 1 correspond
to a growth in W as x diminishes. Only the integral curve passing through W;=1 decreases. At the same
time, it follows from the definition (2.15)

W = pothing= (2.18)

Since the pressure on the interface with the vacuum drops, then W should diminish as y— 0 or as
X — o, where it will be more rapid thany‘b. It is seen from (2.17) that b > 0. Therefore, Wy=M=1 on the
deflagration wave. Therefore, subsonic flows are impossible; the Jouguet condition is satisfied for fluxes
increasing with time.

Reasoning analogously for the case n < 0, we obtain that no integral curves are possible except W=
Wy =a, e, M?=1/a. We hence obtain the analytic expressions (2.12) and the relationship (2.14). For
n > 0 an analytic solution can be obtained in parametric form

(W —a)/ (1 — a)I'* = Wp** (2.19)

The distribution of the parameters in the self-similar variable 4 is represented in Fig, 2 forn >0
?namely, forn=2 (solid curves)]and for n < 0 [namely, for n=—2/3 (dashes)lfor v =5/3. The pressure P
(curve 1}, temperature PV (curve 2), andvelocity U (curve 3) distributions are qualitatively similar for
different n. The distributions of the specific volume V (curve 4) and the density can differ substantially for
different n. For n=2/(y +1) we obtain from (2.12)-(2.14).
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I‘Tt’ ! V=i, P=PV=p U=M[t+21—y), =121 (@2.20
W 28t '
| lao Therefore, the density in the layer is constant. As n diminishes
Py further a lower density is achieved behind the deflagration wave than
‘\ near the interface with the vacuum. The terminal particle hence has an
\ -6.0 infinitely high density. Such a nature of the density distribution is related
/ to the fact that the particles adjoining the boundary with the vacuum pro-
\ gslir— y P
RS ceed through the deflagration wave at those times when the density on the
\ i wave would be quite high (for n <0 we have infinitely high radiation flux
T ————— ] densities, and pressure and density of the material for t =0),
It is not expedient to consider solutions with n < —1 since they cor-
-7 7 7 7 U respond to infinitely high energy delivered to the wave.

Fig. 3 Let us examine the magnitude of the pressure p, ahead of a deflagra-
tion wave. According to (1.6), the pressure drop p, /pW in the wave dimin-
ishes as M diminishes in a subsonie flow, but the pressure behind the wave p,, rises. Consequently, the
pressure p, ahead of the wave is increased somewhat as compared to the case when M =1 (for the same flux
density); however, this increase is insignificant. In the limit case we have M2 =¢y—1)/2y for n=—1. There-
fore, fory =5/3 we have M=1/v5 =0.445. The ratio p,/py hence grows just 1.45-fold ascompared with the
case M=1.

An approximate method to determine the pressure p; on the surface of a solid for a smoothly varying
function g, (t) can be based on this fact. The quantity p, can be estimated at each instant by means of the
self-similar solution by assuming that the quantity M at each instant corresponds to the instantaneous
value n=dlnqy/dint.

V. L Bergel'son used the method in [8] for a numerical computation of the problem of evaporation
wave propagation and vapor motion behind it for the case of transparent vapors for a typical bell-shaped
pulse. These computations verified the assumption expressed above: the pressure during the whole pulse
almost exactly follows the radiation flux. This method is not applicable for an abruptly varying flux magni-
tude, for the origination of shielding, see [8].

3. The case of adiabatic expansion of a gas behind a deflagration wave has been considered earlier.
Heating of the material occurred only within the wave (the process of increasing the transparency was con-
sidered irreversible).

Evaporation waves originate also under the effect of powerful radiation sources of complex spectrum
on the material [9, 10]. However, when a large number of sufficiently hard quanta is present in the spec-
trum, the vapor may remain opaque even when the phase transition temperature T, is exceeded. Ouly for
higher temperatures do. ionization and bleaching of the material set in; the mean absorption coefficient
with respect to the spectrum starts to drop. In some cases this drop is sufficiently abrupt (see [9], for
example) near some transparency temperature T,. Radiation energy is liberated in a narrow zone, i.e., an
ionization wave, to which the deflagration wave representations are also applicable [6]. The temperature
is lowered as the material scatters according to the adiabatic law. But as soon as the temperature is
lowered below T 4, intense energy liberation starts. It weakens when the temperature again reaches T 4.

A certain quantity of energy is liberated in the gas for such an intense, although brief, residence in the
absorption domain, and the scattering occurs nonadiabatically. It is natural to consider the limit case when
the absorption coefficient varies by a jump: from an infinitely large to an infinitely small value for T =T ,.
In this case the motion can be considered isothermal. Such a problem is considered below. The quantity
of energy being liberated in the gas can be determined from the solution obtained and the corresponding
diminution in the radiation flux density reaching the deflagration wave can be found.

Let us consider the limit case

% =00, &< ey; =0 e>e, (3.1)

The expansion occurs isothermally. The solution for this case can be obtained from the solution
presented in See. 2 for adiabatic scattering by performing the passage to the limit ¥y — 1. We have for
decreasing radiation fluxes, constant in time (n=0),

P=p,V=yp? PV=1, U=M-—Milny, M*=1+n (3.2)
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For increasing fluxes (n »0) M=1 we obtain the following parameter distributions:

1 n

PZMVW1 V= VWv g=n+1

i
[(TV—i)/(nJri)]g*( n \8 gi(ms1)
W =\7TT) ¥
Vai1i Vidl4+1 VWn+1)—1 (3.3)
=1— 1 .
v 72 H[Vn+1—1 VW(n+1>+1]

It should be kept in mind that the radiation flux density Oy Will differ from the radiation flux density
4, incident on the interface between the material and the vacuum m=0. Since the assumption about isothermy
is valid: 8e/6t=0, then we obtain from the energy equation by using the conservation laws on the wave

1—J)ye, 3\t g
%’”_—_-(1_ (_M.)fﬂ_) , J(n):—S[ﬂ(p,)dp (3.4)
w 0

Here cy, is the isothermal speed of sound. For cy, the integral in (3.4) can be evaluated exactly:
Jn)y=M*+2M*+2=2/(n+1)+n+3 (3.5)
For n=0 we have J =5.

The effective optical thickness 7 can be introduced

9w/ gy = exp (— ) (3.6)

The dependence of J (curve 1) and 7, (curve 2) on n for a typical value of the ratio H/cW2 =4 for an
evaporation wave is shown in Fig. 3. For n = 0 we have 7,~0.25. Therefore, radiation absorption in the
region of gas scattering being the wave is insignificant.

It should be noted that the value of 7, is close to that obtained in [12] for an approximate solution of
the self-similar problem [12, 18] for a power-law dependence of the absorption coefficient on the tempera-
ture and the density.

The author is grateful to V. L. Bergeltson for the mentioned assistance, and to A. A. Nikol*skii and
Yu. P. Raizer for interest in the research.
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