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Two s e l f - s i m i l a r  p r o b l e m s  about plane nons ta t ionary  gas s ca t t e r i ng  in a vacuum behind a 
de f lagra t ion  wave for  which the conserva t ion  laws a re  sa t i s f i ed  a re  cons idered .  The energy  
flux dens i ty  i s  cons ide red  to v a r y  acco rd ing  to a power  law. In the f i r s t  p r o b l e m  the gas is 
t r a n s p a r e n t  and s c a t t e r e d  ad iaba t ica l ly .  The solut ion is found ana ly t ica l ly .  It is shown that 
the Jouguet  condit ion is conse rved  for  a flux growing with t ime ,  while such a condition is not 
s a t i s f i ed  for  a d e c r e a s i n g  flux, and the p a r a m e t e r s  on the wave depend on the flow behind it. 
In the second p rob lem,  the gas ab so r bs  rad ia t ion ,  where  the absorp t ion  coeff ic ient  v a r i e s  f rom 
inf ini te ly  l a rge  to inf ini tely smal l  a t  some t r a n s p a r e n c y  t e m p e r a t u r e .  The motion is i s o t h e r -  
mal. A definite f rac t ion  of the incident  energy,  co r r e spond ing  to the effect ive opt ica l  t h i c k -  
ness  ~ 0.25, is e x t r a c t e d  in the gas. 

1. The sur face  l a y e r s  of a condensed opaque substance evapora te  under  the effect  of incident  p o w e r -  
ful r ad ia t ion  f luxes.  In some c a s e s ,  the subs tance  being evapora t ed  becomes  t r a n s p a r e n t  under  the effect  
of opt ica l  r ad ia t ion  o f n o t t o o  high an intensi ty.  The r ad ia t ion  pe ne t r a t e s  into deeper  l a y e r s  of the substance,  
causing them to heat up, to evapora te ,  etc. ;  in subs tance ,  compara t i ve ly  n a r r o w  zones of energy l ibe ra t ion  
and changes in the phase  s ta te  o r  evapora t ion  waves p ropaga te  [1-6] in the m a t e r i a l .  

These a r e  def lagra t ion  waves at c o m p a r a t i v e l y  low rad ia t ion  flux dens i t i e s  [7] s ince they a r e  p r o p a -  
ga ted  at subsonic ve loc i t i e s  r e l a t ive  to the  m a t e r i a l  ahead of them. The p a r a m e t e r s  c h a r a c t e r i z i n g  the state 
of the m a t e r i a l  ahead of and behind the wave a re  r e l a t e d  by the conserva t ion  laws [3-6]. 

Two condit ions must s t i l l  be given to s e l ec t  the "burning n ra te  for  a known rad ia t ion  flux densi ty  r e -  
sul t ing in a wave. One is phys ica l :  the t e m p e r a t u r e  of the m a t e r i a l  behind the wave should be known. The 
o the r  i s  gasdynamic .  In the gene ra l  case ,  th is  is  the condit ion that  the flow behind the wave be cons is ten t  
with the law of wave propaga t ion  in a subsonic gas flow: "the over tak ing  c h a r a c t e r i s t i c  y ie lds  the mi s s ing  
r e l a t ionsh ip"  [8]. In the l imi t  case  the wave moves behind it upon compl iance  with the Jouguet  condition. 
F o r  an a r b i t r a r y  law of t i m e - v a r i a t i o n  in the r a d i a t i o n - f u x  densi ty  incident  on the wave and causing it to 
be propagated ,  the law of wave motion and the flow behind it can only be found by numer ica l  methods ([8], 
for  example) .  

The case  when the m a t e r i a l  behind the def lagra t ion  wave is comple te ly  t r a n s p a r e n t  and is s c a t t e r e d  
ad i aba t i ca l ly  in a vacuum is  often examined.  The flow behind the wave is s e l f - s i m i l a r  for  a constant  flux 
densi ty  and a constant  ve loc i ty  of wave motion (the cen t r a l  r a r e f a c t i o n  wave), and the Jouguet condition is 
s a t i s f i ed  behind the wave [3-5]. 

If the incident  rad ia t ion  flux dens i ty  q is  v a r i a b l e ,  where  it v a r i e s  in t ime  acco rd ing  to the power  law 
q ~ t n, and the t r a n s p a r e n c y  t e m p e r a t u r e  and effect ive enthalpy of burning a re  invar iant ,  then the p rob l em 
is s e l f - s i m i l a r .  This  p rob l em is cons ide r ed  here in .  

Let  us examine the case  in which the densi ty  of the m a t e r i a l  P0 ahead of  the def lagra t ion  wave is l a rge  
c o m p a r e d  to the densi ty  Pw behind the wave. The t e m p e r a t u r e  T O and the ve loc i ty  of the m a t e r i a l  ahead of 
the wave u 0 a r e  a l so  sma l l  c o m p a r e d  to the t e m p e r a t u r e  T w and ve loc i ty  u w behind the wave. Let us note 
that  the p r e s s u r e  P0 ahead of the wave, which is the p a r a m e t e r  d e s i r e d ,  is ,  on the o ther  hand,  g r e a t e r  than 
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the  p r e s s u r e  Pw beh ind  the  wave .  A s s u m i n g  00 = ~ (or  v 0 = O0 -~ =0),  u 0 =0,  T O =0,  we ob ta in  the  r e l a t i o n -  
s h i p s  on the  wave  in  the  f o r m  

Po = N u ~  + p~ ,  N = 9~u~,  N H  = q~ (1.1) 

H e r e  N i s  t he  m a s s  f low t h r o u g h  the wave ,  qw i s  the  r a d i a t i o n  f lux d e n s i t y  beh ind  the  wave ,  H is  the  
e f f ec t i ve  e n t h a l p y  i nc lud ing  the  hea t  of  e v a p o r a t i o n :  

H = h~ + 1/~u~o~ + Q~ (1.2) 

The  e n t h a l p y  of  the  gas  beh ind  the  e v a p o r a t i o n  wave  h w is  r e l a t e d  to Pw and  Pw by the equa t ion  of 

s t a t e  

h~ = P~P~-~7~ / (Tv - -  t) 

w h e r e  -/ i s  the  i n t e g r a l  a d i a b a t i c  index,  a n d ' y w  is  i t s  va lue  beh ind  the  wave .  
b e t w e e n  the  e s c a p e  v e l o c i t y  u w and  the  sound  v e l o c i t y  Cw: 

(1.3) 

Let  us  w r i t e  the  r e l a t i o n s h i p  

H e r e  k w is  the  d i f f e r e n t i a l  a d i a b a t i c  index and the n u m b e r  M is  a s t i l l  u n d e t e r m i n e d  p a r a m e t e r .  
Us ing  (1.4), (1.1) and  o m i t t i n g  the  s u b s c r i p t  w fo r  c onve n i e nc e ,  we ob t a in  

(1.4) 

cal. 

l u ]  ~ M c  = M [k (7 - -  l )  h / 7 1  v, 
P0 ~- P (t + kM2), p = q [h (7 - -  1) / (?k)]'/-" ( H M ) - ' ,  

~/ = h (1 -~ 1/2 k (7 - -  ~) 7 -1M~) + Ov (1.5) 

Le t  us hence fo r th  c o n s i d e r  tha t  t he  d i f f e r e n t i a l  and  i n t e g r a l  a d i a b a t i c  i n d i c e s  a r e  c o n s t a n t  and i d e n t i -  
Then  (1.5) s i m p l i f y  and  b e c o m e  

I "I = M V ~ -  ,1) h, 
p = q V F -  ~) h / n U v ,  

Po = P ( t  + 7 M  ~) 

H = h ( l  + ' / 2 ( 7 - -  l) M 2) + Q, 
(1.6) 

F o r  a cons t an t  va lue  of  h and  unchanged  v a l u e  of  M the  r a t i o  b e t w e e n  the  p r e s s u r e  Pw beh ind  the  wave  
[and in c o n f o r m i t y  wi th  (1.6) the p r e s s u r e  P0 a h e a d  of  the  wave  a lso]  and  the  f l u x  d e n s i t y  q r e m a i n s  i n v a r i -  
ant .  Le t  us note tha t  the  p r e s s u r e  d rop  P0/Pw in a d e f l a g r a t i o n  wave  is s m a l l ,  does  not e x i s t  a s  M - *  0 
( e s s e n t i a l l y  a s u b s o n i c  hea t ing  w a v e ) , a n d  equa l s  ~ 2 - 2 . 6 7  (as -/ v a r i e s  b e t w e e n  1 and 5/3 fo r  M = I ,  t h e  
J o u g u e t  cond i t i on  is  s a t i s f i e d ) .  

The  c o n t r i b u t i o n  of  the  k i n e t i c  e n e r g y  to  t h e  e f f ec t ive  b u r n i n g  e n t h a l p y  is  i n s i g n i f i c a n t :  the  f r a c t i o n  
of  k i n e t i c  in t h e r m a l  e n e r g y  is  (1/2)(3, - 1 )  M 2, i . e . ,  i s  neg l ig ib l e  a s  T ~  1 o r  M ~ 0 .  F o r  M = I  and T = 5 / 3  

it is 1/3 the thermal. 

If the value of q is constant, then all the rest of the parameters are also constant for invariant M. 

For escape into a vacuum M=I, a central rarefaction wave is propagated behind the deflagration wave [3- 

5] (also see the survey papers [I0, Ii]). 

For escape into a sufficiently low density medium or for a sufficiently high radiation flux density 

directly behind the deflagrationwave the flow is the same as for escape into a vacuum [ii, 12]. At a certain 
density of the medium its influence is extended to the deflagration wave and the motion becomes subsonic. 

The parameters behind the wave can be found by starting from the connection of the conditions behind the 
shock moving in the medium to the conditions on the deflagration wave [13]. 

The Jouguet condition is spoiled also when the material behind the wave is insufficiently transparent 

and a noticeable quantity of energy is liberated therein; shielding of the surface beingevaporatedoccurs [8]. 

It i s  i n t e r e s t i n g  to c l a r i f y  the  cond i t i ons  u n d e r  which  the Jougue t  cond i t i on  is s a t i s f i e d  fo r  s c a t t e r i n g  
in a v a c u u m  and fo r  a c o m p l e t e l y  t r a n s p a r e n t  m a t e r i a l  beh ind  the  wave .  

2. Le t  t h e r e  be a p o w e r - l a w  t i m e  dep e nde nc e  of  the  f lux d e n s i t y  on the wave  

qw = q ,  (t  / t , )  ~ (2.1) 

Le t  us c o n s i d e r  the  magn i tude  of  the  e f f ec t i ve  e n t h a l p y  hw, of  the  t e m p e r a t u r e  Tw, and of  the  sound  
v e l o c i t y  c w beh ind  the  wave  to  be i n v a r i a n t .  Then,  a c c o r d i n g  to  (1.6), the  p r e s s u r e  Pw beh ind  the  wave  and  
the d e n s i t y  Ow a l s o  v a r y  a c c o r d i n g  to  a p o w e r  Iaw 
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Pw = P , ( t /  t,) a, p~ = ( ~ p , / c r  2) ( t /  t,) ~ 

A s s u m i n g  M invar ian t ,  we find the law of wave motion 

TpwMt* (t / t , )  n+l = m , t  n+~ 
m~ -- ~ (-h-~t) 

The e s c a p e  ve loc i ty  is cons tan t  

(2.2) 

(2 ~ 

u~ = c~ (2.4) 

The quant i t ies  p ,  and m ,  a r e  the p r e s s u r e  and m a s s  at  the t ime t = t ,  when q w = q ,  and a r e  d e t e r -  
mined by means  o f  (1.6). 

The p r o b l e m  is so lved  in L a g r a n g e  m a s s  coord ina te s .  Let  us in t roduce  the s e l f . s i m i l a r  va r i ab l e  

= m /mw = (m / m,) (t I t,) -(~+1) (2.5) 

A s s u m i n g  the  gas  behind the  wave is t r a n s p a r e n t ,  let  us c o n s i d e r  the mot ion  adiabat ic  and the  en t ropy  of  
d is t inc t  p a r t i c l e s  di f ferent .  S tar t ing  f r o m  the re la t ionsh ips  on the evapo ra t i on  wave  and the condi t ion of  
en t ropy  c o n s e r v a t i o n  in the pa r t i c l e ,  we obtain 

(2.6) 

The solut ion of  the s y s t e m  of  equat ions  de sc r ib ing  plane aons t a t i ona ry  gas mot ion wil l  be sought  as  

p = p ,  ( t  I t , ) '~P (IX), v = v ,  ( t  I t , ) n V  (t~), tt = c~,U (~t) (2.7) 

We obtain  a s y s t e m  of o r d i n a r y  d i f ferent ia l  equa t ions  to  d e t e r m i n e  P ,  V, and U: 

d U  d P  
- - ' r  -~-~ + -/5- = 0 

~ - V + d ~  I dLr = 0 ,  P W  - -  p -x  (2.8) 
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The l a s t  of  the r e l a t i o n s h i p s  p r e s e n t e d  is the  s o - c a l l e d  a d i a b a t i c i t y  i n t e g r a l  [14, 15]. 

The  cond i t i on  on the  i n t e r f a c e  wi th  the  v a c u u m  is  

P (0) = 0 

and  fo r  the  p a r a m e t e r s  beh ind  the wave ,  we have the  c ond i t i ons  

P ( I )  = t ,  Y ( l )  = 1, U ( I )  = M 

The q u a n t i t y  M is  a s t i l l  unknown p a r a m e t e r .  E l i m i n a t i n g  U f r o m  (2.8), we ob ta in  

d~y( dP ~ ) 0 
n V - F ~ ,  t -~ av t~2T~ "~ n~-'l 

F o r  n _< 0 t h e r e  is  an a n a l y t i c  s o l u t i o n  of  (2.11) s a t i s f y i n g  (2 .7)- (2 .10) :  

k (l - -  ~-~) P = p ~ ,  V = ~-' ,  U :  M +  (k--l) ' rM 

w h e r e  the  e x p o n e n t s  k and s a r e  de f ined  by the  r e l a t i o n s h i p s  

(2.9) 

(2.10) 

(2.11) 

(2.12) 

and the p a r a m e t e r  M is  de f ined  un ique ly  by  m e a n s  of  n and  T 

M ~ = i + ~/2n (7 -Y I) / 7 (2.14) 

Therefore, for radiation fluxes decreasing with time M < i, the Jouguet condition is not satisfied, 

the motion is subsonic, and the flow behind the deflagration wave affects its parameters. 

For n > 0 (2.12) is not used successfully since there would be M > 1 according to (2.14). Let us make 

a change of variables 

P = ~ k z ,  V = ~ - ~ y ,  z = y - ~  
W = y-('~+l)M-2 = z(~+l)'"M--' (2.15) 

We ob ta in  the  fo l lowing  equa t ion  f r o m  (2.11): 

dW (i -- W) (2.16) 
VV (a--W) = b dx 

( ,, ~___~ ( n 7 + ' ) - ~ ,  b ~+~  k 2 ~--~ " (2.17) a = s - -  , , + 1 ]  k = t • ~ 7 7 " 3" n + l  

The  b o u n d a r y  cond i t i ons  (2.10) on the  d e f l a g r a t i o n  wave  go o v e r  into W ( 0 ) = W  0 = M  -2. The q u a l i t a t i v e  
b e h a v i o r  of the  i n t e g r a l  c u r v e s  of  (2.16) is  shown in Fig .  1. The p a r a m e t e r  W 0 has  s t i l l  not been  d e t e r -  
mined ;  h o w e v e r ,  W 0 ->1 s i n c e  M-< 1. It i s  s e e n  f r o m  Fig .  1 tha t  a l l  the  i n t e g r a l  c u r v e s  for  W 0 > 1 c o r r e s p o n d  
to a g rowth  in W a s  x d i m i n i s h e s .  Only  the  i n t e g r a l  c u r v e  p a s s i n g  th rough  W 0 =1 d e c r e a s e s .  At  the  s a m e  
t i m e ,  i t  fo l lows  f r o m  the  de f in i t i on  (2.15) 

W = p(~l);  ~-b  (2.18) 

Since  the  p r e s s u r e  on the  i n t e r f a c e  wi th  the  v a c u u m  d r o p s ,  t hen  W shou ld  d i m i n i s h  a s  ~ ~ 0 o r  a s  
x - -  ~ ,  w h e r e  i t  w i l l  be m o r e  r a p i d  t h a n ~  - b .  It is  s e e n  f r o m  (2.17) tha t  b > 0. T h e r e f o r e ,  W 0 = M = I  on the  
d e f l a g r a t i o n  wave .  T h e r e f o r e ,  s u b s o n i c  f lows a r e  i m p o s s i b l e ;  the  Jougue t  cond i t i on  i s  s a t i s f i e d  fo r  f luxes  
i n c r e a s i n g  wi th  t i m e .  

R e a s o n i n g  a n a l o g o u s l y  fo r  the  c a s e  n < 0, we ob t a in  tha t  no i n t e g r a l  c u r v e s  a r e  p o s s i b l e  e x c e p t  W =  
W 0 = a ,  i . e . ,  M 2 = l / a .  We hence  ob t a in  the  a n a l y t i c  e x p r e s s i o n s  {2.12) and the  r e l a t i o n s h i p  {2.14). F o r  
n > 0 an a n a l y t i c  s o l u t i o n  can  be o b t a i n e d  in p a r a m e t r i c  f o r m  

[(W -- a) / (1 -- a)] ~-~ = WIx ~ (2.19) 

The  d i s t r i b u t i o n  of  the  p a r a m e t e r s  in t he  s e l f - s i m i l a r  v a r i a b l e  /~ is  r e p r e s e n t e d  in F ig .  2 fo r  n > 0 
[namely ,  fo r  n=2  ( s o l i d  c u r v e s ) ]  and fo r  n < 0 [namely ,  fo r  n = - 2 / 3  (dashes ) ]  fo r  y =5/3.  The p r e s s u r e  P 
( cu rve  1), t e m p e r a t u r e  PV (cu rve  2), and v e l o c i t y  U (cu rve  3) d i s t r i b u t i o n s  a r e  q u a l i t a t i v e l y  s i m i l a r  fo r  
d i f f e r e n t  n. The d i s t r i b u t i o n s  of  the  s p e c i f i c  v o l u m e  V ( cu rve  4) and  the  d e n s i t y  can  d i f f e r  s u b s t a n t i a l l y  for  
d i f f e r e n t  n. F o r  n=2/ (T  +1) w e  ob t a in  f r o m  (2.12)-(2 .14) .  
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2 _ p,)], M2_  ~;--t (2.20) V = I ,  P = P V = l x  ~, U = M  t§ "r 

Therefore ,  the density in the layer  is constant. As n diminishes 
further  a lower density is achieved behind the deflagration wave than 

! near the interface with the vacuum. The te rminal  part icle  hence has an 
~g0 i infinitely high density. Such a nature of the density distribution is related 

/ to the fact that the par t ic les  adjoining the boundary with the vacuum p ro -  
ceed through the deflagration wave at those t imes when the density on the 
wave would be quite high (for n < 0 we have infinitely high radiation flux 

~0 Z densities, and p re s su re  and density of the mater ia l  for t =0). 

It is not expedient to consider  solutions with n < - 1  since they co r -  
-I 0 Z n # respond to infinitely high energy delivered to the wave. 

Fig. 3 Let us examine the magnitude of the p ressu re  P0 ahead of a def lagra-  
lion wave. According to (1.6), the p ressure  drop P0/Pw in the wave dimin- 

ishes as M diminishes in a subsonic flow, but the p ressu re  behind the wave Pw r ises .  Consequently, the 
p ressu re  P0 ahead of the wave is increased  somewhat as compared  to the case when M = I  (for the same flux 
density); however, this increase  is insignificant. In the limit case we have M 2 = ( 7 - 1 ) / 2 3 '  for n = - l .  There -  
fore, for 3/ =5/3 we have M = 1 / ~  =0.445. The ratio P0/Pw hence grows just 1.45-fold ascompared  with the 
case M = 1. 

An approximate method to determine the p res su re  P0 on the surface of a solid for a smoothly varying 
function qw(t) can be based on this fact. The quantity P0 can be est imated at each instant by means of the 
se l f - s imi la r  solution by assuming that the quantity M at each instant corresponds  to the instantaneous 
value n = d lnqw/d ln t .  

V. L Berge l ' son  used the method in [8] for a numerical  computation of the problem of evaporation 
wave propagation and vapor  motion behind it for the case of t ransparent  vapors  for a typical  bel l -shaped 
pulse. These computations ver i f ied the assumption expressed  above: the p res su re  during the whole pulse 
almost  exactly follows the radiation flux. This method is not applicable for an abruptly varying flux magni- 
tude, for the origination of shielding, see [8]. 

3. The case of adiabatic expansion of a gas behind a deflagration wave has been considered ear l ie r .  
Heating of the mater ia l  occur red  onlywithin the wave (the process  of increasing the t r ansparency  was con- 
s idered i r revers ib le) .  

Evaporat ion waves originate also under the effect of powerful radiation sources  of complex spec t rum 
on the mater ia l  [9, 10]. However, when a large number of sufficiently hard quanta is present  in the spec-  
t rum, the vapor  may remain  opaque even when the phase t ransi t ion t empera tu re  T v is exceeded. Only for 
higher t empera tu res  d o  ionization and bleaching of the mater ia l  set in; the mean absorption coefficient 
with respec t  to the spec t rum s tar ts  to drop. In some cases  this drop is sufficiently abrupt (see [9], for 
example) near  some t r ansparency  tempera tu re  T . .  Radiation energy is l iberated in a narrow zone, i.e., an 
ionization wave, to which the deflagration wave representa t ions  are  also applicable [6]. The t empera tu re  
is lowered as the mater ia l  sca t te rs  according to the adiabatic law. But as soon as the t empera tu re  is 
lowered below T , ,  intense energy l iberation s tar ts .  It weakens when the tempera ture  again reaches  T . .  
A cer tain quantity of energy is l iberated in the gas for such an intense, although brief,  residence in the 
absorption domain, and the scat ter ing occurs  nonadiabaticaliy. It is natural to consider  the limit case when 
the absorption coefficient var ies  by a jump: f rom an infinitely large to an infinitely small  value for T = T . .  
In this case the motion can be considered isothermal .  Such a problem is considered below. The quantity 
of energy being l iberated in the gas can be determined f rom the solution obtained and the corresponding 
diminution in the radiation flux density reaching the deflagration wave can be found. 

Let us consider  the limit case 

x = c r  e < e , ;  •  e>~e,  (3.1) 

The expansion occurs  isothermally.  The solution for this case can be obtained f rom the solution 
presented in Sec. 2 for adiabatic scat ter ing by per forming the passage to the limit ,? ~ 1. We have for 
decreas ing radiation fluxes, constant in t ime (n -< 0), 

P =lx, V=[a -1, P V =  1, U = M - - M - 1 1 n ~ t ,  M ~ = t - + - n  (3.2) 
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For  increas ing fluxes (n > 0) M = I  we obtain the following pa rame te r  distr ibutions:  

p = ~ V W ,  v =  1 ,, 

[ (W-Ol ( ,+~) l  g ( n l~p,~,,(~+~) 
w \-~--4-T ] 

u = l - - g  V,~+-, l n [ V , ~ + ' + ,  V w ( . + , ) - ~ ]  
2 V ~ + ~ - t  V w ( , , + t ) + t  

(3.3) 

It should be kept in mind that the radiation flux density qw will differ f rom the radiation flux density 
q0 incident on the interface between the mater ia l  and the vacuum m=0.  Since the assumption about i so thermy 
is valid: 0e/St = 0, then we obtain f rom the energy equation by using the conservat ion laws on the wave 

m--7- 2 H  ] , Y (n) = U 2 (~t) d~ (3.4) 
9 

Here c w is the isothermal  speed of sound. For  c w the integral in (3.4) can be evaluated exactly: 

Y(n) = M  2 +  2M - ~ +  2 = 2 / ( n _  i) + n + 3  (3.5) 

For  n=0 we have J =5. 

The effective optical thickness T e can be introduced 

q~ / q0 ---- exp (-- ~) (3.6) 

The dependence of J (curve 1) and m e (curve 2) oa n for a typical  value of the ratio H/Cw2 =4 for an 
evaporation wave is shown in Fig. 3. For  n - 0 we have T e ~ 0.25. Therefore ,  radiation absorption in the 
region of gas sca t te r ing  being the wave is insignificant. 

It should be noted that the value of 7 e is close to that obtained in [12] for an approximate solution of 
the se l f - s imi l a r  problem [12, 18] for a power- law dependence of the absorption coefficient on the t e m p e r a -  
ture  and the density. 

The author is grateful to V. I. Berge l ' son  for the mentioned ass is tance,  and to A. A. Nikol 'skii  and 
Yu. P. Raizer  for interest  in the r e sea r ch .  
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